
Approved for public release; further dissemination unlimited

Preprint
UCRL-JC-139628

Time Critical Isosurface
Refinement and Smoothing

V. Pascucci and C. Bajaj

This article was submitted to
Volume Visualization and Graphics Symposium 2000
Salt Lake City, UT
October 9-10, 2000

July 10, 2000
Lawrence
Livermore
National
Laboratory

U.S. Department of Energy

 DISCLAIMER

 This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for
the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and
shall not be used for advertising or product endorsement purposes.

 This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited
or reproduced without the permission of the author.

 This report has been reproduced
 directly from the best available copy.

 Available to DOE and DOE contractors from the

 Office of Scientific and Technical Information
 P.O. Box 62, Oak Ridge, TN 37831

 Prices available from (423) 576-8401
 http://apollo.osti.gov/bridge/

 Available to the public from the

 National Technical Information Service
 U.S. Department of Commerce

 5285 Port Royal Rd.,
 Springfield, VA 22161
 http://www.ntis.gov/

 OR

 Lawrence Livermore National Laboratory

 Technical Information Department’s Digital Library
 http://www.llnl.gov/tid/Library.html

IEEE Volume Visualization and Graphics Symposium 2000

Time Critical Isosurface Refinement And Smoothing
�

V. Pascucci
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

C. L. Bajaj
Center for Computational Visualization

CS & TICAM, University of Texas at Austin

��� �

Figure 1: (left) Smoothing and (right) refinement with smoothing computed from a coarse representation (center) using the same progressive
algorithm.

Abstract

Multi-resolution data-structures and algorithms are key in Visual-
ization to achieve real-time interaction with large data-sets. Re-
search has been primarily focused on the off-line construction of
such representations mostly using decimation schemes. Drawbacks
of this class of approaches include: (i) the inability to maintain in-
teractivity when the displayed surface changes frequently, (ii) in-
ability to control the global geometry of the embedding (no self-
intersections) of any approximated level of detail of the output sur-
face.

In this paper we introduce a technique for on-line construc-
tion and smoothing of progressive isosurfaces (see Figure 1). Our
hybrid approach combines the flexibility of a progressive multi-
resolution representation with the advantages of a recursive sub-
division scheme. Our main contributions are: (i) a progressive al-
gorithm that builds a multi-resolution surface by successive refine-
ments so that a coarse representation of the output is generated as
soon as a coarse representation of the input is provided, (ii) ap-
plication of the same scheme to smooth the surface by means of a
3D recursive subdivision rule, (iii) a multi-resolution representation
where any adaptively selected level of detail surface is guaranteed
to be free of self-intersections.
�
This work was performed under the auspices of the U.S. Depart-

ment of Energy by University of California Lawrence Livermore National
Laboratory under contract No. W-7405-Eng-48. Research supported in
part by NSF grants CCR-9732306, DMS-9873326, ACI-9982297 and San-
dia/LLNL DOE ASCI-BD4485

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—surfaces and object representations

Keywords: Multi-resolution data-structures, progressive algo-
rithms, recursive subdivision, smooth isosurfaces, consistent em-
bedding.

1 INTRODUCTION

The current evolution of 3D scanning devices, computer simula-
tions and modeling systems gives rise to surface and volumetric
meshes of increasingly high complexity. The real-time display and
transmission of such high resolution data is a challenging task re-
quiring the fast generation of approximated representations. In re-
cent years a great deal of research has been focused on the problem
of constructing hierarchical representations with multiple levels of
detail for any given surface [6, 8, 9, 11, 13, 17, 22, 24, 28, 29, 42].
The approaches developed have been successful in the off-line con-
struction of quality multi-resolution surfaces. At run-time they
allow fast selection of adaptive levels of detail for improved dis-
play speed. Unfortunately the time necessary to build such multi-
resolution representations is too high to allow run-time modifica-
tion of the surface. Moreover the simplification primitives used,
like edge/triangle contraction or vertex removal, can easily lead to
self-intersecting surfaces. The same problem of self-intersections
can arise during the smoothing of the surface with a subdivision
scheme.

In this paper we present one solution of such problems restricting
our attention to the case of meshes computed as isocontours of 2D
or 3D scalar fields [32]. An isocontour or isosurface ���
	�� of a
scalar field ��
��� is defined as the locus of points where the field has
value 	 , ���
	������� ��� ��
������	 ����� � Computation of isosurfaces
is used for surface reconstructions from volumetric input. Scientific
data (large physically based simulations, CT/MRI medical scans,
etc.) are visualized using isosurfaces.

Adopting a multi-resolution data-structures for the output sur-
face allows one to trade accuracy for speed and thereby achieve
interactive response times in graphical display. In particular four
predominant scenarios may arise in trying to achieve real time dis-

IEEE Volume Visualization and Graphics Symposium 2000

play:

Quality-Driven. Compute quickly the simplest surface satisfying
a given error tolerance �

�
Time-Critical. Within a given time bound ��� compute the most

accurate output surface. Within a second time interval ��� pro-
vide the best visual improvement of the output surface.

Asynchronous. Same as Time-Critical but with unknown � � and
��� . The computation is asynchronously interrupted at the
deadline.

Dynamic. Solve either of the above while the isovalue 	 changes
frequently (off-line hierarchy construction not feasible).

In this paper we introduce a progressive algorithm that solves
all four scenarios above. The main feature of our scheme is the
ability to extract in a multi-resolution fashion the input volumetric
data to build a multi-resolution version of the output by successive
refinements.

We use a refinement primitive that updates a local portion of the
output so that a consistent output mesh is maintained at any given
time. This allows for asynchronous termination of the computa-
tion within a small constant delay (termination of a critical section).
Moreover the refinement operation is guaranteed to be performed
within a small volumetric cell � . In particular the refinement prim-
itive maintains a consistent portion of the surface inside � . This
guarantees a correct embedding of any adaptive mesh extracted at
run time. Finally we show how the same refinement scheme al-
lows one to achieve smooth output when combined with a 3D sub-
division rule used to super-sample the volumetric data with cubic
precision.

We focus our attention on the case where the multi-resolution
representation of the volumetric data is based on the edge bisection
refinement rule widely used in mesh generation [38, 39, 40]. For
rectilinear volumetric input this is an adaptive oct-tree like sam-
pling.

The remainder of this paper is organized as follows. Section
2 discusses previous related work. Section 3 introduces the time-
critical refinement algorithm for two-dimensional meshes. Section
4 presents the 3D extension of the algorithm. Asymptotic analysis
of the algorithm complexity is reported in Section 5. Section 6
presents the coupled subdivision scheme for smoothing the output
surfaces. Section 7 discusses the practical use of the scheme while
conclusions are drawn Section 8.

2 RELATED WORK

A great deal of research has been devoted in the past to the de-
velopment of multi-resolution geometric data-structures. Several
contributions provided from different fields like Computer Graph-
ics, Computational Geometry and Mesh Generation, have lead to
the development of high quality surface simplification schemes, re-
cursive subdivision methods for surface smoothing, wavelet anal-
ysis and decomposition, hierarchical geometric data-structures for
efficient spatial indexing and mesh refinement techniques for mul-
tilevel finite element methods.

Simplification. The main simplification primitives proposed in
literature are vertex removal [13, 43, 10], edge contraction [24],
and triangle contraction [18]. They have been applied successfully
to the construction of high quality simplified objects using several
different error metrics [17, 42, 6, 8, 22, 3, 24]. Maintaining a history
DAG of the decimation process applied to maximally independent
sets of primitives allows us to build the required multi-resolution

representation. The selective traversal of this representation al-
lows fast construction of adaptive levels of detail [13, 10, 11, 12].
Higher quality representations can be achieved constructing corre-
spondences among the different levels of detail so that mesh proper-
ties can enhance the display of the coarsest representations [29, 9].
This also enables continuous deformation between homeomorphic
objects [28].

Wavelet Analysis. One recent trend in multi-resolution sur-
face generation is the design of methods based on wavelet func-
tions [33, 45]. One main advantage of the multi-resolution analysis
at the basis of the wavelet approach is that it immediately gives a
compact hierarchical multi-resolution data-structure with guaran-
teed error bounds. The basic ingredient needed for wavelet analysis
is the construction of nested function spaces which are best asso-
ciated with the connectivity of subdivision surfaces. This restricts
the class of meshes that can be processed, requiring eventual re-
meshing of the input. Hybrid approaches can be designed to take
advantage from the quality of wavelet analysis keeping the gener-
ality of a simplification scheme [27].

The general framework of wavelet analysis is formalized inde-
pendently of the intrinsic/embedding dimension of the geometric
object. This allows for example to achieve multi-resolution repre-
sentation and analysis for volumetric data [41, 44, 34].

Mesh Refinement. Similar solutions have been designed in
the meshing community for the adaptive refinement of triangular
meshes using a fixed set of templates [4]. A simpler and more flexi-
ble approach is the edge bisection strategy by Rivara [40]. A unique
subdivision template is used to recursively subdivide the cells of a
2D mesh until a given adaptivity constraint is achieved. This im-
plicitly yields a multi-resolution data-structure built starting from
a quality coarse representation. The approach generalizes imme-
diately to 3D tetrahedralizations [40, 38] and to higher dimension
by performing the refinement process from the lower dimensional
simplices of the mesh to the higher dimensional. This is the scheme
that we are currently assuming for the input tetrahedralizations.

Subdivision Schemes. Using a recursive subdivision scheme
one automatically achieves a hierarchical multi-resolution repre-
sentation. This enable for example multi-resolution editing tech-
niques [50]. The quality of the generated meshes is dependent from
the subdivision mask used. For triangular domains Loop [31] pro-
vides an approximating subdivision scheme converging to a surface
that is � � almost everywhere. The exception is at extraordinary
vertices, that do not have exactly six incident edges, where the con-
tinuity decreases to � � . The butterfly subdivision scheme [15] con-
verges to an interpolating surface that is � � everywhere except for
extraordinary points with exactly three or more than seven incident
edges. A modified version [51] has been proposed that converges to
a � � surface everywhere. Similarly for subdivision of quadrilateral
domains one can use the Catmull-Clark scheme [5] or the interpo-
latory scheme by Kobbelt [26] to build smooth approximations of a
coarse meshes. Subdivision schemes have been also used to build
smooth vector fields [47]. In the following we will consider an ex-
tension of the scheme in [26, 14] for smoothing of scalar fields.

Efficient Isocontouring. The basic isocontour computation al-
gorithm [32] is know to be inefficient since it waste time explor-
ing empty regions of the underlying volumetric data. Geometric
space indexing [49] is sufficient to achieve a substantial speedup.
Span space indexing techniques can provide further improvement
with nearly optimal [30] or even optimal speedup [2, 7] even with
minimal storage overhead [46]. The insufficient results achieved

IEEE Volume Visualization and Graphics Symposium 2000

even with such optimal techniques require to use more flexible ap-
proaches [20, 16] that allow us to use the multi-resolution represen-
tation of the volumetric data to extract an adaptive level of detail
for the output. The lack of an actual multi-resolution representation
for the output limits the practical use of such schemes especially
for large datasets since a substantial amount of computation may
be required when adaptation between different levels of resolution
needs to be recomputed frequently.

General solution to the problem of rendering in a time-critical
environment have also been explored [19, 25]. Such optimization
techniques solve the “hard deadline” problem for high quality hi-
erarchies if the time available is known in advance but do not con-
sider the asynchronous termination problem or the case of dynamic
change of the represented object.

3 2D SPATIAL HIERARCHY AND ISO-
CONTOUR REFINEMENT

This section considers the 2D version of our progressive refinement
algorithm and data-structure. The design of the algorithm is de-
pendent on the kind of hierarchical data-structure assumed for the
input spatial hierarchy. We focus on the case of the edge bisec-
tion refinement that is widely used in the meshing community. This
scheme can also be used to build a multi-resolution data-structure
for regular grids without preprocessing since it is equivalent to a
pre-determined order (octree-like) for reading the vertices.

Figure 2 shows the 2D edge-bisection refinement. The coarse
level is triangular mesh. Each refinement step inserts a new vertex
on an edge and splits the triangles adjacent along such edge into
two halves. The refinement can be applied locally to perform adap-
tive refinement (Figure 2a) or globally to increase uniformly the
resolution of the mesh (Figure 2b). Figure 2c shows a sequence of
edge-bisection refinements for a regular grid. We use this scheme
to perform progressive extraction of boundary curves from a picture
as in Color Plate 1.

The 2D mesh partitions the region of space of interest in trian-
gles. Each vertex is associated with an input function value. In-
side each triangular cell a linear function is used to interpolate the
function values at the vertices. In this way we have a piecewise
linear representation of the scalar field �
� � necessary to compute
an isocontour. As the edge-bisection algorithm makes progress new
function values are introduced and a more detailed definition of the
function ��
��� is obtained. We show how this refinement procedure
can be mapped directly into a refinement of the output isocontour.
That is, instead of recomputing portions of the contour, we augment
its representation generating directly a progressive data-structure.
This progressive representation of the isocontour can be traversed
adaptively independently from the underlying mesh.

3.1 Vertex Coloring

We color the vertices of the mesh to classify all possible 2D cases of
isocontour deformation induced by the edge-bisection refinement.
A vertex is black if its function value is greater than the current
isovalue. A vertex is white if its function value is smaller than or
equal to the current isovalue.

Figure 3 shows the bisection of the edge � � and the insertion
the new vertex � � The two triangles

�� � � and
�� � � are divided

into four triangles
�� � � ,

�� � � ,
�� � � and

�� � � . Note that if � �
is a boundary edge only one triangle (either

�� � � or
�� � �) needs

to be considered. The isocontour (in thick line) is updated conse-
quently.

Since for isocontouring purposes symmetric configurations,
where white vertices become black and vice versa, are equivalent

(a)

(b)

(c)

Figure 2: 2D Mesh refinement by edge-bisection. (a) Local adap-
tive refinement. (b) Global uniform refinement. (d) Sequence of
edge-bisection refinements for a regular grid.

we consider only non-symmetric cases. Consequently we enumer-
ate the configurations only in terms of “equal” colors or “different”
colors. In this way we avoid enumerating twice equivalent cases.
The basic observation driving the analysis below is that one edge of
the 2D mesh intersects the isocontour iff its vertices have different
colors.

Denote with the lower case letters ���	�
� �������� the colors of the
vertices

� � � � ��� � ��� respectively. Three main cases arise de-
pending on the colors �
��� and � � For each case two sub-cases may
occur depending on the colors � and � �
���� � . The colors of the two extremes of � � are different (Fig-

ure 3a-c). Initially the isocontour does intersect the edge � � .
After the bisection the isocontour intersects either ��� or � �
(but not both).

� � � . If � � � � � after the bisection only two triangles
intersect the isocontour as in Figure 3a. Otherwise after
the bisection all four triangles intersect the isocontour
as in Figure 3b.

���� � . Two symmetric cases, both equivalent to Figure 3c, can
occur.

� � � � � . The coloring of ��� � ��� is the same (Figure 3d-e). The
isocontour does not intersect the edge � � neither before nor
after the bisection.

� � � . If � � � � � � � � � we have the trivial case where
both the two initial triangles and the four final triangles
do not intersect the isocontour. No action needs to be
taken. If instead � � ���� � � � � � we have the case
of Figure 3d (or symmetric).

���� � . Two cases equivalent to Figure 3e can occur.

� � ���� � . The coloring of the vertices of the bisection edge is
the same but different from the coloring of the new vertex �
(Figure 3f-h). The isocontour initially does not intersect the
edge � � . After the bisection the isocontour intersects both
��� and

� � .

� � � . This is the most interesting configuration where the
topology of the contour is modified. In particular if
� � � � � � � the quadrilateral polygon

�� � � �
does not intersect the contour. Hence a new connected
component is created inside (Figure 3g). If instead
� � ���� � � � the connectivity of the contour flips

IEEE Volume Visualization and Graphics Symposium 2000

from the configuration Figure 3h(top) to the configura-
tion of Figure 3h(bottom).

� �� � . Either � or � is equal to � so that the configuration of
Figure 3f (or symmetric) is generated.

Note that in all cases the intersection between the boundary of
the quadrilateral

�� � � � and the isocontour does not change. Only
the interior of

�� � � � is affected by the refinement. Hence to main-
tain the topology and geometry of the isocontour we only need to
update its data-structure corresponding to the eight deformations
shown in Figure 3.

3.2 Local Isocontour Update

For contour refinement we use a set of six primitives that ex-
tends the basic vertex split used in progressive meshes [23]. The
six primitives (illustrated in Figure 4) are: (i) VertexMove(

�
)

the vertex
�

is moved to a new position, (ii) VertexSplit(
�

,
�

)
a new edge

� �
is introduced at

�
, (iii) VertexOpen(

�
,
�

)
similar to VertexSplit(

�
,
�

) but no edge connects
�

to
�

,
(iv) EdgeFlip(

� � � � ��� �) the edges
� �

and � � are replaced by� � and
� �

, (v) NewEdge(
� � �) a new edge of vertices

�
and�

is created, and (vi) NewLoop(
� � � � ��� �) a new closed polygon

with four vertices
� � � � ��� � is created.

Bifore AfterPrimitive

NewLoop(
������������	

) ��

�	

VertexMove(
�

) � �

VertexSplit(
�

,
�

) � � �

VertexOpen(
�

,
�

) � � �

Edge Flip(
���
��������	

)

� �

	� 	�

� �

NewEdge(
�����

) �
�

Figure 4: Isocontour refinement primitives.

It is easy to see that the six refinement primitives above are suf-
ficient to perform the eight updates shown in Figure 3. In particular
each of the cases requires the following refinements:

case (a) One VertexMove().

case (b) One VertexMove() and two VertexSplit() operations. If � � is
a boundary edge the update reduces to one VertexMove() and
one VertexSplit().

case (c) One VertexMove() and one VertexSplit(). If � � is a bound-
ary edge

�� � � is the same as in case (a) while
�� � � is the

same as (b).

case (d) Two VertexSplit() operations. If � � is a boundary edge one
VertexSplit() only.

case (e) One VertexSplit().

case (f) One VertexMove() and two VertexSplit() operations. If � �
is a boundary edge

�� � � would require one VertexMove()
and one VertexOpen().

�� � � would instead require one
NewEdge() and one VertexSplit().

case (g) One NewLoop(). If � � is a boundary edge one NewEdge()
and one VertexSplit().

case (h) One EdgeFlip() and two VertexSplit() operations. If � � is a
boundary edge one VertexOpen() and one VertexSplit().

The application of the rules above allows one to build progres-
sively a multi-resolution representation of the isocontour. Note that,
by construction, independent refinements occur in non-overlapping
regions of space so that any adaptive level of detail extracted from
the multi-resolution data-structure is guaranteed to be without self-
intersections even if adaptive traversal is performed on the isocon-
tour hierarchy instead of the mesh hierarchy.

Moreover, we execute each refinement step in Figure 4 within
a critical section as an atomic transaction. We therefore maintain
a consistent data-structure that can be safely accessed at any time
within a small constant delay. In this way we solve the “hard dead-
line” problem for time critical computations even if the deadline is
not known in advance or if the isosurface is changed dynamically.
The quality may be degraded depending on the frequency of the
modifications but the response time can be guaranteed. At the same
time the classical quality-driven traversal can also be performed.

In the following section we show how this scheme can be imple-
mented for the computation of isosurfaces of scalar fields defined
on 3D volumetric meshes.

4 3D SPATIAL HIERARCHY AND ISOSUR-
FACE REFINEMENT

The edge bisection refinement apply to 3D tetrahedral meshes in
the same way it applies to 2D triangular meshes. Color Plate 2
shows the corresponding progressive refinement of an isosurface.
For simplicity of analysis we first consider the update of the isosur-
face within a single tetrahedron. Then we show how to compose
such deformation to update the isosurface within the set

�
of all

tetrahedra around the bisection edge.

4.1 Vertex Coloring

(1) (3)(2’)(1’)

(a) (b) (d) (e)(c)

�

���

�

� �

(2) (4) (5’)(5)

Figure 5: (a-c) A set of seven tetrahedra with a common edge. (d-e)
The fourteen tetrahedra obtained by bisection of the common edge.
The bottom raw shows the eight different coloring configurations
with respect to the bisection edge � � (modulo black and white com-
plementarity). Configurations (1),(2) and (5) are also equivalent (by
symmetry) to (1’),(2’) and (5’) respectively.

Similarly to the 2D case one can classify the vertices of the tetra-
hedra around the split edge depending of the value of the function
values compared with the current isovalue. The main difference
from the 2D cases that the number of tetrahedra incident to the edge

IEEE Volume Visualization and Graphics Symposium 2000

C B

C B

A D

E

A D

C B

C B

A D

E

A D

C B

C B

A D

E

A D

C B

C B

A D

E

A D

C B

C B

A D

E

A D

C B

C B

A D

E

A D

C B

C B

A D

E

A D

C B

C B

A D

E

A D

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 3: List of all possible type of updates of isocontour configurations for 2D edge bisection. The 2D mesh edges are drawn in thin lines.
The isocontour is drawn in thick line. The new edges created by the edge bisection are drawn in dashed lines. The top row shows the initial
configurations before the bisection. The bottom row shows the final configurations after bisection. The function values at the initial vertices� � � � ��� � and at the new vertex � are marked black if greater than the current isovalue, white if smaller or equal).

bisected cannot be bounded (it is a local set but not necessarily a
small set). Consequently the analysis cannot be done exhaustively
on the entire set of tetrahedra. One needs instead to classify all the
possibilities for a single tetrahedron and show how they can be com-
bined in a unique result. Figure 5(a-c) shows three different views
of seven tetrahedra all incident to a common edge � � . Figure 5(d-
e) shows two views of the fourteen tetrahedra resulting from the
bisection of � � . The bottom row of Figure 5 shows the eight differ-
ent coloring for a single tetrahedron where vertex � (at the bottom)
is fixed to be black and the edge being bisected is � � . Note that
the edges and facets shared among several tetrahedra must have the
same color. For example cases (1),(2),(1’) and (2’) can all occur
around the same edge but none of them can appear together with
one of (3),(4),(5) or (4’) because the bisected edge would have dif-
ferent coloring. Moreover adjacent tetrahedra must have the same
coloring at the shared facet so that if cases (1) and (1’) appear in the
same configuration they cannot be adjacent.

Similarly to the 2D case the analysis of the isosurface refinement
is divided into three main cases:

�
� �� �

� (Figure 7). The bisected edge � � is intersected by the iso-
surface.

�
� � �

� � �� (Figure 8). The bisected edge � � is not intersected by
the isosurface and neither are the two halves � � and � � .

�
� � �

���� �� (Figure 9). The bisected edge � � is not intersected by
the isosurface but both � � and � � are intersected.

4.2 Refinement Primitives

Eight refinement primitives (see Figure 6) are used for the local
update of the isosurface currently computed.

1. VertexMove(�). Vertex � is moved to a new position.

2. VertexSplit(��� ��� � � �). The vertex � is split into two vertices
� and � connected by an edge. The two edges � � and � � are
split into the triangles � � � and � � � .

3. VertexOpen(� � ��� � � � � � � � � �). The same as VertexSplit if the
two booleans � � � � � are both ������� . If � � �	� ��
� � the triangle
� � � is not created. If �

� ��� ��
� � the triangle � � � is not
created.

4. EdgeFlip(� � ��� �����). The triangles � � � and � � � are replaced
by the triangles � � � and � � � �

5. NewLoop(���	��� � � � � � � � ���). ��� triangles are added. The
first � triangles are � � � � � � � � � ��� � � � � � � ����� � ��� � � ������� � The
remaining � triangles are � � � � ��� � � � � � � � � � � � ����� � ��� � � ����� � �Overall the ��� triangles form a closed surface with the topol-
ogy of a sphere.

6. NewSurf(� � ��� � � � � � � � ���). ����� ��� � triangles are added. The
first ����� triangles are � � � � � � � � � ��� � � � � � � � ��� � � � � The re-
maining � triangles are � � � � ��� � � � � � � � � � � � ����� � ��� � Overall
the � ��� ��� � triangles form a simple open surface.

7. CylinderFlip(� � � � � � ����� �	� � � � � � �����
� �
�	�). The

initial cylinder is formed by the ��� triangles
� � �	� �
�	� � � � � �	� �
�	� ��� � � � � ����� � ���� ������� � � ����� � ���� ���� ���� ��� � �	��� � ��� ��� � �	� � . They are replaced by two
groups of � triangles. The first � triangles are
� � �	� �
� � � � � �	� � � ��� � � � � ����� � �	��� � �
� ��� �	� � � � (top
of the cylinder). The second � triangles are
� � �� ���	��� � �
�	� � �	��� � � � � ����� � �	��� �	��� ��� �	� � �	� (bottom of
the cylinder).

8. ConnectivityChange(����
� �������	� �!). This primitive changes
connectivity of the surface without changing its geometry
(that is the set of points that belong to the surface). This be-
cause the change converts the surface between two possible
manifold representations of the same non-manifold geometry.
The surface is made of four triangles � � � � � � ��� � � � and � � �
Initially � � � is adjacent to � � � while � � � is adjacent to � � �The primitive modifies such connectivity information to make
� � � adjacent to � � and � � � adjacent to ��� � �

4.3 Simple intersection with the edge "�# .
Consider the case where

�
���� �

� , the isosurface has a single intersec-
tion with � � . With reference to Figure 7, the tetrahedra around � �
are either of type (1a) or of type (2a). The tetrahedron of type (1a)
can be adjacent to another tetrahedron of type (1a) or to facet � � � of
a tetrahedron of type (2a). Similarly (2a) can be adjacent to its sym-
metric with respect to � � where the colors

�� and
�
� are exchanged.

Moreover at � � � it can adjacent to (1a) while at � � � it can be adja-
cent to the upside down symmetric of (1a) where

�� � �
� � �

� �� �
� .

The update rules for each case are as follows.

(1a) $ (1b). One VertexMove is needed to adjust the position of
the isosurface vertex along � � . Two VertexSplit operation are
necessary to create the two new vertices on � � and � � with the
two additional triangles on the isosurface inside the tetrahe-
dron.

IEEE Volume Visualization and Graphics Symposium 2000

�
�

�

�

�

Before After

VertexMove(�)

VertexSplit(���
� ���� �)

VertexOpen(���
� ���� � � ���	��
�)

�
�

������ ������� � ��� �������

�������

���� ����

� ����� � �� � �
� �

���

�
�

�

�

�

actual geometry

�

�

�

�

�

�

Before After

� ����� � �
� �

� �

�������
���� ����
���

�

�

�

�

�

�

�
�

�

�

�

�

NewLoop(���
� �� � ������� ��)

EdgeFlip(���
� ���� �)

�

�

�

�

�

�

NewSurf(���
� �� � ��������
�)

�

�

������

� 	� �

�

�

�����

� � �

Before After

CylinderFlip(� � ���������������
� � ��������� � ��� �� �)

ConenctivityChange(���
� ���� � �	��� �)

Figure 6: Isosurface refinement primitives.

�

�

�
(1b)

�

�

�
(1c)

�

�

�
(1a)

�

�

�
(2b)

�

�

�
(2c)

�

�

�
(2a)

� �

��

Figure 7: (1a) and (2a) are the type of tetrahedra around � � for an
isosurface with a single intersection with the bisection edge. The
portion of isosurface inside the tetrahedra is shown as a gray poly-
gon. (1b-c) and (2b-c) are the possible configurations after the bi-
section operation. The bold lines mark the boundary of the region
where the isosurface is not modified.

(1a) $ (1c). Only one VertexMove is needed to adjust the position
of the isosurface vertex along � � .

(2a) $ (2b). One VertexMove is needed to adjust the position of
the isosurface vertex along � � . One VertexSplit operation is
necessary to create the new vertex on � � and the additional
triangle on the isosurface inside the tetrahedron.

(2a) $ (2c). One VertexMove is needed to adjust the position of
the isosurface vertex along � � . One VertexSplit operation is
necessary to create the new vertex on � � and the additional
triangle on the isosurface inside the tetrahedron.

Note that one should perform the VertexMove along � � only once
for all � tetrahedra around � � � Similarly each VertexSplit refine-
ment is done once for each facet � � � or � � � on which a new vertex
is created.

�

�

�
(3a) (3b)

�

�

�
(4b)

�

�

�

�

�

�
(4a)

�

�

�
(5a)

�

�

�
(5b)

� � �

Figure 8: (3a),(4a) and (5a) are the type of tetrahedra around � � for
an isosurface with no intersection with the bisection edge. The por-
tion of isosurface inside the tetrahedra is shows as a gray polygon.
(3b),(4b) and (5b) are the possible configurations after the bisection
operation for

�� � �
� . The bold lines mark the boundary of the region

where the isosurface is not modified.

�

�

�
(3a) (3c)

�

�

�
(4c)

�

�

�

�

�

�
(4a)

�

�

�
(5a)

�

�

�
(5c)

� � �

Figure 9: (3a),(4a) and (5a) are the type of tetrahedra around � � for
an isosurface with no intersection with the bisection edge. The por-
tion of isosurface inside the tetrahedra is shows as a gray polygon.
(3c),(4c) and (5c) are the possible configurations after the bisection
operation for

�� �� �
� . The bold lines mark the boundary of the region

where the isosurface is not modified.

4.4 No intersection with the edge "�# .
Consider the case of Figure 8 where

�
� � �

� � �� and the isosurface
has no intersection with � � before the bisection nor with � � , � � after
the bisection. The tetrahedra around � � are of type (3a),(4a) or (5a).
The tetrahedron of type (3a) can be adjacent to another tetrahedron
of type (3a) or to facet � � � of tetrahedron (5a). The tetrahedron (4a)
can be adjacent to another tetrahedron of type (4a) or to facet � � � of
tetrahedron (5a). Tetrahedron (5a) can be adjacent to its symmetric
with respect to � � where the colors

�� and
�
� are exchanged. On facet

� � � tetrahedron (5a) can be adjacent to (3a) while on � � � it can be
adjacent to(4a). There are three refinement cases to consider:

IEEE Volume Visualization and Graphics Symposium 2000

(3a) $ (3b). There is no portion of isosurface so nothing needs to
be done.

(4a) $ (4b). Two VertexSplit operation are necessary to create the
two new vertices on � � and � � on the isosurface inside the
tetrahedron.

(5a) $ (5b). One VertexSplit operation is necessary to create the
new vertex on � � and one additional triangle on the isosurface
inside the tetrahedron.

Note that if out of the � facets incident to � � only
�

intersect the
isosurface then

�
VertexSplit refinement operations are sufficient in

total to perform the refinement induced by the edge bisection of the
3D mesh.

4.5 Intersection with the edges "�� and � # but not
of "�# .

Consider the case where
�
� � �

� �� �� . The isosurface has no inter-
section with � � before the bisection but intersects both � � and � �
after the bisection. The adjacency conditions among the tetrahedra
are the same as the previous case. Differently from the previous
two cases, it is not possible to simply derive the transformations on
each tetrahedron separately. The three main cases to be considered
are:

(3a) $ (3c). Initially there is no portion of isosurface in the tetra-
hedron. The bisection induces the creation of two triangles
inside the tetrahedron.

(4a) $ (4c). There are two triangles before and after the bisec-
tion. Their connectivity need to be changed depending on the
neighboring tetrahedra.

(5a) $ (5c). One new vertex is added along the edge � � and three
additional triangles must be created to refine the isosurface.

The above refinements can be combined in multiple ways which
are dependent on the facet adjacency constraints due to compatible
vertex coloring. Among the different tetrahedra sequences around
� � the following four global configurations need to be considered.

Empty Region. All tetrahedra are of type (3a). Initially there is
no surface. A NewLoop primitive creates all the ��� triangles
(two per tetrahedron) of the new isosurface component. If
there are boundary facets then a NewSurf is used instead.

Cylindrical Surface. All the tetrahedra are of type (4a). Initially
the isosurface is roughly like a cylinder of axis � � . A Cylin-
derFlip primitive flips the connectivity to be the top and bot-
tom of the cylinder.

Single Component. This is the case where the tetrahedra are con-
catenated as follows: one tetrahedron of type (5a),

�
tetra-

hedra of type (4a), one tetrahedron of type (5’a) (the axial
symmetric of (5a)) followed by
 tetrahedra of type (3a). In
short this is written � (5a)-(4a) � -(5’a)-(3a) � � . Naturally for a
loop of � tetrahedra, with � �
�� � � � . Note also that the
loop may be interrupted at any point by two boundary facets.

Multiple Components. The loop of � simplicies is divided in �
sequences of Single Component type. This can be written as� (5a)-(4a) �	� -(5’a)-(3a) �
� ��� , where ������ � ��� �
 � � � � � � .
Again such sequence may be interrupted by boundary facets.

�	�
� �
� �
� �
���

Level 0

Level 1

Level 2

Level 3

CUT

(a) (b) (c)

Figure 10: (a) Sequence of levels of resolution of an isocontour �
(bold black line) of a 2D scalar fieled (light gray liens). (b) The
hierarchical representation of � (black arrows) is a subgraph of the
mesh hierarchy (gray arrows). (c) An adaptive refinement of � .

The resolution of the Single Component � (5a)-(4a) � -(5’a)-
(3a) � � case requires an appropriate sequence of VertexSplit and
EdgeFlip primitives which number depends on the specific values
of
�

and
 . This can be extended to the Multiple Components
case with the use of one ConnectivityChange primitive for each ed-
diational connected component. More details regarding this two
complicated refinements can be found in [37].

5 ANALYSIS

In this section we analyze the characteristics of the algorithm and
its asymptotic behavior for input size � and output size � . The fact
that any adaptive resolution isocontour has correct embedding de-
rives from the fact that the output hierarchy is a subgraph of the
input hierarchy. In fact any node in the output hierarchy is built by
mapping one refinement node in the input into some refinements
(merged in a single node) in the output hierarchy. Figure 10 shows
the case of a 2D regular grid which hierarchy (in gray) is a graph
that contains as subgraph the hierarchy of any contour (in black).
Each node in the input hierarchy represents the (one or two) tri-
angles incident on the split edge. As a consequence any adaptive
traversal of the output graph (nodes above some given cut) corre-
sponds both to an adaptive mesh in the input and in the output. The
adaptive traversal of the input does not need to be computed1 but
the fact that it exists proves that the adaptive output is the isocon-
tour of some actual mesh. Hence the contour itself does not have
any self intersection.

We show an optimal behavior for the computation of large iso-
contours while the overhead for the computation of smaller isocon-
tours is kept within a reasonable logarithmic factor.

Consider an isocontour of output size � (� line segments in 2D
or � triangles in 3D). We assume that the input mesh is organized in
a binary tree hierarchy with the coarse level having size � � � � and
lowest level (finest resolution) of size ����� � . Note that under this
condition no isocontour can have size larger than � ��� � because
each cell in the input mesh intersects any isocontour in at most a
constant number of simplices (line segments in 2D or triangles in
3D). In particular in our asymptotic analysis we call large an iso-
contour of output size exactly ����� � and small an isocontour that is� ������� for any constant

��� � �
Theorem 1 Given an isocontour of output size � � ����� � � , for
some constant

� � � , the corresponding hierarchy generated by
the progressive isocontouring algorithm has size ������� for

� � �
and has size � ���"!$#&% � � for

��' � �
1Note that the adaptive traversal of the isocontour may be performed at

a client side where the 3D mesh is too large to be available locally.

IEEE Volume Visualization and Graphics Symposium 2000

Proof The input hierarchy is a complete binary tree
where the finest resolution has size ����� � . Hence the
height of the input hierarchy is !$# % � � � � � � � Since
the progressive isocontouring algorithm produces one
level in the output hierarchy for each level in the in-
put hierarchy the height of the output hierarchy is also!$# % ��� � � � � � �

� !$# % � � � � � � . For
� � � this im-

plies that the overall output hierarchy has size ����� � . For� ' � the overall output hierarchy has size � ��� ! #&% � � .�
In other words for non-small contours the output is a balanced tree
which is optimal for large contours.

Theorem 2 Given an isocontour of size � � ��������� , for some con-
stant

� � � , the time necessary to compute the isocontour is ����� �
for
� � � and � ��� !$# % � � for

� ' � .
Proof Follows immediately from the previous theorem
and from the fact that the progressive isocontouring al-
gorithm generates an output tree of
 nodes in
 steps of
constant time each. �

For large contours the computation time is linear in the size of the
finest output resolution and hence optimal. Otherwise a logarithmic
penalty factor is introduced by the traversal of the input hierarchy.

Theorem 3 Given an isocontour of output size � the correspond-
ing hierarchy size and computation time is � ���"!$# % � � .

Proof From the same observations of theorem 1 it de-
rives that the height of the output tree is !$# % � � � � � � .
Hence the hierarchy’s overall size is � ��� !$# % � � . As
shown in Theorem2 the computation time is just pro-
portional to the overall size of the output. �

(b) (c)

(a)

�
����� �������� � ������ � �� � � � �� � � � � � �� � � � 	 � �� � � �

� �
� � �� �

Figure 11: Coefficients of the 3D subdivision rule. (a) Computation
for the central point of an edge. (b) Computation fro the central
point of a face. (c) Computation for the central point of a cube.
The cross marks the position of the new vertex computed as linear
combination of the neighbors. The circles and squares (empty or
full) symbols classify the vertices depending on their coefficient
in the linear combination. The actual coefficient is reported at the
bottom of each configuration near the relative symbol.

6 SMOOTHING

In this section we consider the problem of generating smooth ap-
proximations of isosurfaces from image data. In particular we use
the same algorithm and data-structure presented in the previous sec-
tion, applied now to a derived scalar field.

The key feature of our progressive algorithm is the ability to add
more detail to the surface representation as new function values are
added to the input field. This gives us the opportunity to solve
the smoothing problem by adding appropriate function values to
the scalar field to smooth down the field and hence the isosurface.
To achieve this goal we use an interpolatory subdivision scheme,
that generalized to the 3D case the 1D approach of [14] already ex-
tended to the 2D case in [26]. The subdivision mask of choice is
the order three tensor

 � � � � � � � ��� � � � � � with

� �
 ���
��� ��� ������ ��� ������ � �������� �

The subdivision scheme is guaranteed to converge to a smooth
limit function for � ' � ' � ��� ��� � � [14]. The choice of � � �
yields a B-spline interpolant of cubic precision. Figure 11 shows
the topology of the subdivision mask where the vertices are marked
with different symbols if the have different averaging coefficients.

Since the gradient of the field is normal to the isosurface, the
smoothness of the field in general yields smooth isocontours. Im-
portant exceptions to this rule are the criticalities of the field where
the gradient vanishes and hence sharp features may be obtained.
Figure 12 shows a smooth drop with a sharp tip obtained at a sad-
dle point of a scalar field.

Since we can interleave refinement and smoothing steps within
a unified framework we can combine these operations in several
imaginative spatio-temporal ways. For example Figure 12b shows
a surface extracted from the HIPIP dataset with the right half refined
(with low error) and the left half smoothed directly from a coarse
(high error) approximation. In practice we combine smoothing with
refinement to improve the currently best approximation of the input
model (see Color Plate 3).

Note also that for surfaces with continuous changes in curvature,
like the brain model in Color Plate 4, even the smoothing process
applied directly to the surface could lead to self-intersecting sur-
faces. With our approach we avoid this problem since we smooth
the surface using the progressive algorithm that always guarantees
no self-intersections.

(a) (b)

Figure 12: (a) A smooth drop with a sharp tip obtained at a singular
point of the embedding function. (b) The model of Figure 1c with
the left half smoothed from a coarse level and right half refined and
smoothed.

IEEE Volume Visualization and Graphics Symposium 2000

7 DISCUSSION

The approach presented in this paper enables a new type of trade-
off between speed and accuracy. In our prototype implementation
we uncoupled the isosurface construction from its display. The iso-
contour hierarchy is built by one process that traverses the input
3D mesh. A second process that never access the 3D mesh per-
forms the isocontour traversal and display. The computation time
is slower than an optimal scheme like [2]. Experimentally it was
found to be roughly 1.5 times slower if the same finest resolution
needs to be achieved. The optimal scheme is clearly preferable if
the finest resolution isocontour is known to be small enough to be
rendered in real time. If this not the case our new scheme allows us
to render at any given time partial results while the computation of
complete hierarchy makes progress.

The hierarchical surface data-structure generated by our algo-
rithm is comparable to the one generated by a decimation scheme.
In this case we compromise the quality of the hierarchy whose
coarse levels are not as good as those generated by a decimation
scheme, but still good enough to provide the user with an initial un-
derstanding of the shape that will be obtained. The problem with
the decimation schemes is that even those that are most efficient
like the quadratic error norm [17] are inherently off-line processes
since they require one to build the fine resolution data first and then
to start the decimation process. This off-line process does not sat-
isfies the requirement typical of the interactive isocontouring query
where the isovalue is changed continuously even before the finest
resolution is ever computed. Moreover the coarse levels generated
by a decimation scheme may have self intersecting portions since
the coarse representations of the surfaces are not isosurfaces of a
decimated 3D mesh.

Previous adaptive schemes overcome both these problems by
performing an adaptive traversal of the input 3D mesh. This avoids
the delay due to the construction of the fine resolution and guar-
antees no self intersections at any level of resolution since any ap-
proximation is the isosurface of some scalar field. This class of
solutions provide no hierarchy for the output isocontour making it
difficult to uncouple the adaptive traversal of the isosurface from
its construction. Moreover if the high resolution information is re-
quired the lack of an output hierarchy makes the scheme incur in
the same delays as a single resolution approach.

The key novelty of the present scheme is that providing a set of
local rules for continuous geometric transitions (geomorphs) of one
level of resolution into the next we bridge the gap between adap-
tive techniques and multi-resolution decimation-based techniques.
Different adaptive traversal strategies can be applied concurrently
at the isosurface hierarchy construction side and at the isosurface
hierarchy traversal side. The discussion of the different adaptivity
strategies is beyond the scope of the present paper. Different refine-
ment strategies can be integrated [48, 1, 35, 21, 36]. The focus here
is on the construction of an appropriate data-structure that allows
on-line construction of an hierarchical multi-resolution representa-
tion of the output isosurfaces.

8 CONCLUSIONS

We have introduced a progressive algorithm and data-structure
for time-critical computation of isocontours. The approach also
provide one solution for the problem of maintaining non-self-
intersecting surfaces while extracting adaptive levels of details from
the multi-resolution surface representation. We coupled the scheme
with a subdivision scheme that yields cubic precision B-splines for
the embedding scalar field to obtain correspondingly smooth sur-
faces.

The approach presented shows the viability of the idea of devel-
oping fully progressive algorithms to exploit at their best the avail-

able multi-resolution data-structures and algorithms.
Research supported in part by NSF grants CCR-9732306, DMS-

9873326, ACI-9982297 and Sandia/LLNL DOE ASCI-BD4485

References

[1] F. Allamandri, P. Cignoni, C. Montani, and R. Scopigno.
Adaptively adjusting marching cubes output to fit a trilinear
reconstruction filter. In Visualization in Scientific Computing
’98. Eurographics, 1998.

[2] C. L. Bajaj, V. Pascucci, and D. R. Schikore. Fast isocon-
touring for improved interactivity. In Proceedings of 1996
Symposium on Volume Visualization, pages 39–46, October
1996.

[3] C. L. Bajaj and D. R. Schikore. Topology preserving data
simplification with error bounds. Computers and Graphics,
22(1):3–12, 1998.

[4] R. E. Bank, A. H. Sherman, and A. Weiser. Scientific Comput-
ing (Applications of Mathematics and Computing to the Phys-
ical Science), chapter Refinement Algorithms and data struc-
tures for regular local mesh refinement, pages 3–17. North
Holland, 1983.

[5] E. Catmull and J. Clark. Recursively generated B-spline sur-
faces on arbitrary topological meshes. Computer-Aided De-
sign, 10:350–355, September 1978.

[6] A. Ciampalini, P. Cignoni, C. Montani, and R. Scopigno.
Multiresolution decimation based on global error. The Visual
Comp., 13(5):228–246, 1997.

[7] P. Cignoni, C. Montani, E. Puppo, and R. Scopigno. Opti-
mal isosurface extraction from irregular volume data. In Pro-
ceedings of 1996 Symposium on Volume Visualization, pages
31–38, 1996.

[8] J. Cohen, D. Manocha, and M. Olano. Simplifying polygonal
models using successive mappings. In IEEE Visualization ’97,
pages 395–402, 1997.

[9] J. Cohen, M. Olano, and D. Manocha. Appearance-preserving
simplification. In SIGGRAPH 98 Proc.

[10] M. De Berg and K. T. G. Dobrindt. On levels of detail in
terrains. Graphical models and image processing: GMIP,
60(1):1–12, 1998.

[11] L. De Floriani, P. Magillo, and E. Puppo. Visualizing paramet-
ric surfaces at variable resolution. Lecture Notes in Computer
Science, 1311:308–321, 1997.

[12] Leila De Floriani. A pyramidal data structure for triangle-
based surface description. IEEE Computer Graphics and Ap-
plications, 9(2):67–78, March 1989.

[13] D. Dobkin and D. Kirkpatrick. A linear algorithm for deter-
mining the separation of convex polyhedra. Journal of Algo-
rithms, 6:381–392, 1985.

[14] N. Dyn and D. Levin. Interpolating subdivision schemes for
the generation of curves and surfaces. In Multivar. Approx.
and Interp., pages 91–106, 1990.

[15] N. Dyn, D. Levin, and J. A. Gregory. A butterfly subdivision
scheme for surface interpolation with tension control. ACM
Trans. on Graphics, 9(2):160–169, 1990.

IEEE Volume Visualization and Graphics Symposium 2000

[16] K. Engel, R. Westermann, and T. Ertl. Isosurface extraction
techniques for web-based volume visualization. In IEEE Vi-
sualization 1999, pages 139–146, 1999.

[17] M. Garland and P. S. Heckbert. Surface simplification using
quadric error metrics. In SIGGRAPH 97 Proc., pages 209–
216, 1997.

[18] T. S. Gieng, B. Hamann, K. I. Joy, G. L. Schussman, and
I. J. Trotts. Constructing hierarchies for triangle meshes.
IEEE Transactions on Visualization and Computer Graphics,
4(2):145–161, April 1998.

[19] E. Gobetti and E. Bouvier. Time-critical multiresolution scene
rendering. In IEEE Visualization 1999, pages 123–130. IEEE,
1999.

[20] R. Grosso and T. Ertl. Progressive iso-surface extraction from
hierarchical 3d meshes. In Proceedings EUROGRAPHICS
’98, 1998.

[21] R. Grosso, C. Lürig, and T. Ertl. The multilevel finite element
method for adaptive mesh optimization and visualization of
volume data. In IEEE Visualization 9́7, pages 387–394, 1997.

[22] A. Gueziec. Surface simplification inside a tolerance volume.
Technical report, Yorktown Heights, 1996. IBM Research Re-
port RC 20440.

[23] H. Hoppe. Progressive meshes. In Holly Rushmeier, editor,
SIGGRAPH 96 Proc., pages 99–108, 1996.

[24] H. Hoppe. View-dependent refinement of progressive meshes.
In SIGGRAPH 97 Proc., pages 189–198, 1997.

[25] J. T. Klosowski and C. Silva. Rendering on a budget: A frame-
work for time-critical rendering. In IEEE Visualization 1999,
pages 115–122. IEEE, 1999.

[26] L. Kobbelt. Interpolatory subdivision on open quadrilateral
nets with arbitrary topology. Computer Graphics Forum,
15(3):C409–C420, C485, September 1996.

[27] L. Kobbelt, S. Campagna, J. Vorsatz, and H.-P. Seidel. In-
teractive multi-resolution modeling on arbitrary meshes. In
SIGGRAPH 98 Proc., pages 105–114, 1998.

[28] A. Lee, D. Dobkin, W. Sweldens, and P. Schröder. Multireso-
lution mesh morphing. Proceedings of SIGGRAPH 99, pages
343–350, 1999.

[29] A. W. F. Lee, W. Sweldens, P. Schröder, L. Cowsar, and
D. Dobkin. MAPS: Multiresolution adaptive parametrization
of surfaces. In SIGGRAPH’98 Proc., pages 95–104, 1998.

[30] Y. Livnat, H. W. Shen, and C. R. Johnson. A near opti-
mal isosurface extraction algorithm for unstructured grids.
IEEE Transactions on Visualization and Computer Graphics,
2(1):73–84, 1996.

[31] C. Loop. Smooth spline surfaces over irregular meshes. In
SIGGRAPH ’94 Proc., pages 303–310, 1994.

[32] W. E. Lorensen and H. E. Cline. Marching cubes: A high
resolution 3D surface construction algorithm. In SIGGRAPH
’87 Proc., pages 163–169, 1987.

[33] M. Lounsbery, T. D. DeRose, and J. Warren. Multiresolu-
tion analysis for surfaces of arbitrary topological type. ACM
Transactions on Graphics, 16(1):34–73, 1997.

[34] Shigeru Muraki. Multiscale volume representation by a doG
wavelet. IEEE Transactions on Visualization and Computer
Graphics, 1(2):109–116, June 1995.

[35] P. J. Neugebauer and K. Klein. Adaptive triangulation of ob-
jects reconstructed from multiple range images. In Vis. ’97,
Late Breaking Hot Topics, pages 20–24, 1997.

[36] M. Ohlberger and M. Rumpf. Adaptive projection operators
in multiresolution scientific visualization. IEEE Trans. on Vis.
and Comp. Graph., 4(4), 1998.

[37] V. Pascucci. Multi-resolution and Multi-dimensional Geomet-
ric Data-structures for Scientific Visualization. PhD thesis,
Purdue University, Lafayette, IN, 2000.

[38] A. Plaza and G. F. Carey. About local refinement of tetra-
hedral grids based on local bisection. In 5th International
Meshing Roundtable, pages 123–136, 1996.

[39] M. C. Rivara. Algorithms for refining triangular grids suit-
able for adaptive and multigrid techniques. J. Numer. Meth.
Engrg., 20:745–756, 1984.

[40] M.-C. Rivara and C. Levin. A 3-d refinement algorithm suit-
able for adaptive and multi-grid techniques. Comm. in Appl.
Numer. Meth., 8:281–290, 1992.

[41] R. Sánchez and M. Carvajal. Wavelet based adaptive interpo-
lation for volume rendering. In IEEE Symposium on Volume
Visualization, pages 127–134, 1998.

[42] W. J. Schroeder. A topology modifying progressive decima-
tion algorithm. In IEEE Vis. 97, pages 205–212.

[43] W. J. Schroeder, J. A. Zarge, and William E. Lorensen. Deci-
mation of triangle meshes. Computer Graphics, 26(2):65–70,
July 1992.

[44] O. G. Staadt, M. Gross, and R. Weber. Multiresolution com-
pression and reconstruction. In Proceedings of IEEE Visual-
ization 1997. IEEE, 1997.

[45] Eric J. Stollnitz, Tony D. DeRose, and David H. Salesin.
Wavelets for Computer Graphics: Theory and Applications.
Morgann Kaufmann, San Francisco, CA, 1996.

[46] M. van Kreveld, R. van Oostrum, C. L. Bajaj, V. Pascucci,
and D. R. Schikore. Contour trees and small seed sets for iso-
surface traversal. In 13th ACM Symposium on Computational
Geometry, pages 212–220, 1997.

[47] H. Weimer and J. Warren. Subdivision schemes for fluid flow.
Proc. of SIGGRAPH 99, pages 111–120.

[48] R. Westermann, L. Kobbelt, and T. Ertl. Real-time explo-
ration of regular volume data by adaptive reconstruction of
iso-surfaces. The Visual Computer, 15(2):100–111, Apr 1999.

[49] Jane Wilhelms and Allen Van Gelder. Octrees for faster
isosurface generation. ACM Transactions on Graphics,
11(3):201–227, 1992.

[50] D. Zorin, P. Schroder, and W. Sweldens. Interactive multires-
olution mesh editing. Computer Graphics, 31(3A):259–268,
August 1997.

[51] D. Zorin, P. Schroeder, and W. Sweldens. Interpolating subdi-
vision for meshes with arbitrary topology. In SIGGRAPH 96
Proc., pages 189–192, 1996.

IEEE Volume Visualization and Graphics Symposium 2000

Color Plate 1: Progressive extraction of isocontours from a 2D image. The isocontours are drawn as yellow lines.

Color Plate 2: Steps in a progressive isosurface computation from the volumetric HIPIP dataset, left to right and top to bottom.

Color Plate 3: Refinement sequence of three approxima-
tions obtained during the reconstruction the hand model
from a CT scan. (top row) Original sequence of approx-
imations. (bottom row) Sequence of smooth approxima-
tions.

Color Plate 4: Successively refined and smoothed brain
model reconstructed from an MRI scan with small error
approximation.

